|--|--|

K23U 2367

Reg. No. :

V Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, November 2023 (2019-2021 Admissions) CORE COURSE IN MATHEMATICS 5B07 MAT : Abstract Algebra

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions from this Part. Each question carries 1 mark:

 $(4 \times 1 = 4)$

- 1. Give an example of a finite group that is not cyclic.
- 2. Find the order of the element 4 in Z_6 .
- 3. What is the order of the permutation (124) (23) in S_6 ?
- 4. Define Kernel of a homomorphism.
- 5. Find all solutions of the equation $x^2 + 2x + 2 = 0$ in Z_{ϵ} .

PART - B

Answer any 8 questions from this Part. Each question carries 2 marks: (8x

 $(8 \times 2 = 16)$

- 6. Find the group table of the Klein 4-group. List all its subgroups.
- 7. Show that every cyclic group is abelian. Discuss its converse.
- 8. Let S be the set of all real numbers except -1. Define * on S by a + b = a + b + ab. Check whether (S,*) is a group or not.
- 9. Find all the generators of Z_{18} .

- 10. Find the number of elements in the set $\{\sigma \in S_5 | \sigma(2) = 5\}$.
- 11. Define odd permutation. Give an example of an odd permutation in S₄.
- 12. Prove that a group homomorphism ϕ defined on G is one-to-one if and only if $\ker(\phi) = \{e\}$.
- 13. Consider $\gamma: Z \to Z_n$ by $\gamma(m) = r$, where r is the remainder when m divided by n. Show that γ is a group homomorphism. What is its kernel?
- 14. Show that the cancellation law with respect to multiplication hold in a ring R if and only if R has no divisors of zero.
- 15. Show that every field is an integral domain. Discuss its converse.
- 16. Define characteristic of a ring. What is the characteristic of the ring Z_6 ?

PART - C

Answer any 4 questions from this Part. Each question carries 4 marks: (4×4=16)

- 17. Let G be a group and let a be one fixed element of G. Show that the set $H_a = \{x \in G | xa = ax\}$ is a subgroup of G.
- Show that every permutation of a finite set can be written as a product of disjoint cycles.
- 19. Let G be a group of order pq, where p and q are prime numbers. Show that every proper subgroup of Z_{pq} is cyclic.
- 20. Let H be a subgroup of a group G such that $ghg^{-1} \in H$ for all $g \in G$ and all $h \in H$. Show that gH = Hg.
- 21. Let $\phi: G \to G'$ be a group homomorphism with kernel H and let $a \in G$. Show that $\{x \in G | \phi(x) = \phi(a)\} = aH$.
- 22. Show that the map $\phi:Z\to Z_n$ where $\phi(a)$ is the remainder of a modulo n is a ring homomorphism.
- 23. An element a of a ring R is idempotent of $a^2 = a$. Show that a division ring contains exactly two idempotent elements.

PART - D

Answer any 2 questions from this Part. Each question carries 6 marks: (2×6=12)

- 24. State and prove Cayley's theorem.
- 25. Let H be a subgroup of a group G. Then show that the left coset multiplication (aH) (bH) = abH is well-defined if and only if H is a normal subgroup of G.
- 26. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.
- 27. Show that the characteristic of an integral domain must be 0 or a prime number. Give examples of two non-isomorphic rings with characteristic 4.